Влияние микроконцентраций гербицида Раундап на развитие проростков озимого тритикале в

главная страница Рефераты Курсовые работы текст файлы добавьте реферат (спасибо :)Продать работу

поиск рефератов

Диплом на тему Влияние микроконцентраций гербицида Раундап на развитие проростков озимого тритикале в

скачать
похожие рефераты
подобные качественные рефераты
1 2 3 4    


Влияние микроконцентраций гербицида «Раундап» на развитие проростков озимого тритикале в лабораторном эксперименте



Введение
Использование пестицидов – практически обязательный элемент технологии возделывания основных сельскохозяйственных культур. Однако высокое насыщение их химическими средствами, характеризующимися различной персистентностью, метаболизмом в почвах и вегетирующих растениях, заметно сказывается на физиолого-биохимических процессах роста и развития возделываемых культур, качестве урожая, состоянии наземных и подземных вод, плодородии почвы. В тоже время оценка и выбор оптимального сочетания химических препаратов при их комплексном применении часто ограничены основным критерием – получаемой прибавкой урожая. Учитывая многообразие прямого воздействия и последействия различных средств химизации и их сочетание на отмеченные процессы, следует подчеркнуть, что комплексное применение химических, агрохимических, биохимических, биологических, токсикологических методов исследований в настоящее время становится насущной необходимостью.

Актуальность работы. В последние годы вопросу защиты окружающей среды от различных загрязнений уделяется серьезное внимание и на исследования в этой области затрачиваются большие средства, что вполне понятно, так как состояние окружающей среды определяет будущее человечества, в том числе здоровье и продолжительность жизни и активной деятельности человека. В связи с этим современные пестициды, прежде чем они будут допущены до практического использования, проходят очень тщательное изучение их поведения в окружающей среде и разрабатываются рекомендации по их безопасному использованию.

Систематическое применение ядохимикатов приводит к их аккумуляции в почве и, как следствие, к поступлению данных ксенобиотиков в продукцию растениеводства. В этих условиях необходим систематический контроль за содержанием остаточных количеств пестицидов в почве, а так же за их влиянием на развитие сельскохозяйственных растений.

Цель работы. Изучение влияния микроконцентраций гербицида «Раундап» на развитие проростков озимого тритикале в лабораторном эксперименте и на содержание в них хлорофилла.

Практическая значимость. Полученные в результате исследований данные могут быть использованы для оценки экологического риска от использования гербицида «Раундап».

Новизна полученных результатов. Был выявлен как стимулирующий, так и ингибирующий эффект различных концентраций изучаемого гербицида. Установлено, что для проростков озимого тритикале оптимальным параметром оценки воздействия данного гербицида является относительный прирост длины и вегетативной массы проростков.

пестицид растение раундап тритикале




1. Обзор литературы
1.1 Пестициды в интегрированной системе защиты растений
Возрастающие масштабы производства и потребления пестицидов, ставили вопросы о возможности загрязнения ими окружающей среды и о возникновении отдельных последствий, опасных для человека и полезных организмов. Такое положение привело к повышению требований к препаратам, рекомендуемым для широкого применения, а также к изучению условий их практического использования. Детальное изучение условий практического использования пестицидов привело к созданию, так называемой, «интегрированной» системы защиты растений [1–4], в которой учитываются экологические особенности вредных и полезных организмов. Химические препараты применяются с таким расчётом, чтобы сохранить полезные организмы, эффективно сочетать использование химических препаратов с биологической защитой растений, при этом учитывается экономическая эффективность того или иного метода защиты растений в конкретных условиях [5].

Интегрированная защита растений включает в себя агротехнические, биологические, биотехнические и химические методы. Интегрированная система защиты растений обычно разрабатывается не только для каждой культуры и для каждого региона, но и для каждого района применения препарата, так как в зависимости от микроклимата могут сильно изменяться и экологические условия. Большое значение для успешного применения химических средств защиты растений в интегрированной системе имеет хорошая организация краткосрочного прогнозирования и сигнализации.

Агротехнический метод борьбы основан на использовании организационно-хозяйственных и агротехнических мероприятий и направлен, с одной стороны, на усиление развития растений, что способствует повышению устойчивости их к повреждениям, с другой стороны, на снижение численности вредителей, болезней, сорняков путем создания неблагоприятных условий для их развития [6,7].

Из агротехнических приемов борьбы с вредными организмами наиболее эффективны обработка почвы, подготовка посевного и посадочного материала, удобрения и подкормка, сроки сева, система ухода за растениями, сроки и способы уборки.

Организационно-хозяйственные мероприятия включают в себя освоение целинных и залежных земель, орошение и обводнение полей, севообороты и размещение в них сельскохозяйственных культур, внедрение устойчивых сортов.

Биологический метод борьбы основан на использовании живых организмов или продуктов их жизнедеятельности для предотвращения или уменьшения вреда, причиняемого вредными организмами. Основным направлением данного метода является использование для защиты растений их естественных врагов – хищников, паразитов, гербифагов [8].

К числу наиболее прогрессивных методов борьбы с вредными насекомыми относится генетический метод, основанный на изменении функций размножения мутантов, так называемых «генетических уродов». Суть его – в пополнении природной популяции особями того же вида, полученными в искусственных условиях, но с измененными генетическими свойствами. Скрещивание указанных особей с нормальными насекомыми приводит к резкому сокращению потомства [9–11].

Возделывание устойчивых сортов в значительной степени снижает затраты на защиту их от вредителей и болезней. Устойчивость растений – это способность его противостоять вредному организму.

Устойчивые к вредным организмам сорта отличаются между собой анатомо-морфологическим строением, биологическими особенностями, способностью к защитной реакции, которая возникает в результате внедрения фитопатогена и направлена на его ограничение или подавление.

В борьбе с болезнями, вредителями и сорняками химические средства защиты растений – пестициды – играют особую роль. Пестициды – это химические вещества, используемые для борьбы с вредными организмами, повреждающими растения и вызывающими порчу сельскохозяйственной продукции. Они не могут заменить агротехнических и биологических мер борьбы, но в комплексе с ними достигают высокого эффекта. Применение пестицидов обеспечивает условия для механизации процессов ухода за растениями, облегчает проведение уборки урожая, позволяет избавиться от таких трудоемких операций, как ручная прополка [12].

Пестициды применяются путем опрыскивания, опыливания, протравливания семенного и посадочного материала, фумигации, аэрозолей, химической иммунизации, отравленных приманок.

Опрыскивание – это способ нанесения раствора пестицида (эмульсии или суспензии) в капельно-жидком состоянии на обрабатываемую поверхность для защиты растений от вредителей и возбудителей болезней, сорняков. Оно производится опрыскивателями – ручными, тракторными, авиационными.

Преимуществами опрыскивания перед другими способами являются равномерное распределение и хорошая удерживаемость на обрабатываемой поверхности, более высокая эффективность по сравнению с опыливанием, меньшая зависимость от метеорологических условий, возможность применения комбинированных пестицидов. Недостатки опрыскивания: сложность приготовления рабочих составов, большой расход жидкости.

Опыливание – это нанесение пестицида в пылевидном состоянии на обрабатываемую поверхность с помощью опыливателей. Опыливание проводится порошковидными препаратами (дустами). При опыливании на 1 га расходуется 10–30 кг дуста. Достоинством опыливания является то, что не нужно перед работой готовить специальных составов. Густые посевы и посадки хорошо пропыливаются. К недостаткам можно отнести: запыливание воздуха рабочей зоны; большой расход препарата по сравнению с опрыскиванием; снос препарата ветром на другие участки; слабую удерживаемость дуста на обрабатываемой поверхности [13,14].

Протравливание – способ нанесения пестицида на семенной материал для уничтожения наружной или внутренней инфекции растительного или животного происхождения. Различают полусухое с увлажнением и мокрое протравливание.

Полусухое протравливание – способ обработки семенного материала водной суспензией или раствором пестицида из расчета 20–30 л на 1 т с последующим томлением. Протравливание с увлажнением также считается полусухим способом протравливания водной суспензией (8–10 л на 1 т без последующей сушки). Для повышения качества протравливания добавляют прилипатели: сульфитно-спиртовую барду (0,7–1 кг/т), силикатный клей (150–200 г./т).

Мокрое протравливание проводят путем погружения семенного материала в раствор пестицида с последующим томлением во влажном состоянии в течение 3–4 ч в кучах под прикрытием брезента, а затем высушивают до нормальной влажности.

Выбор способа протравливания зависит от состава протравителей, биологии возбудителей заболеваний, степени зараженности семян, от обрабатываемой культуры и других условий.

Фумигация осуществляется путем введения пестицида в парообразном или газообразном состоянии в среду обитания вредного организма. Этот способ широко применяется в защитном грунте, для фумигации помещений (складов, элеваторов, зернохранилищ). Достоинство его в том, что пестицид хорошо проникает в пористые материалы, мельчайшие щели, где могут обитать вредные организмы. К недостаткам можно отнести: высокую токсичность для теплокровных животных и человека; способность воспламеняться или взрываться при определенной концентрации паров воздуха.

Введение пестицидов в высокодиспергированном твердом (аэрозоль) или жидком (дым, туман) состоянии в среду обитания вредного организма находит широкое применение в борьбе с вредителями садов, для дезинфекции теплиц, парников, складов и других объектов. Достоинство метода заключается в высокой его эффективности. К недостаткам аэрозолей относятся: слабое оседание мельчайших аэрозольных частиц; недостаточное проникновение частиц в пористые материалы и щели; сильное влияние метеорологических условий [15].

Химическая иммунизация предполагает использование пестицида, создающего неблагоприятные условия для развития в растениях паразитов и положительно влияющего на урожай, как в год применения пестицида, так и в репродукции.

Отравленная приманка – способ применения пестицида вместе с приманочным кормом или материалом для приманочного укрытия. Обычно используют зерно, жмыхи, отруби, мякину и другие приманки, которые хорошо поедаются грызунами.

Для каждой отдельной сельскохозяйственной культуры химические обработки проводят с учетом фенологии вредного объекта и совпадения сроков его самой агрессивной фазы со сроками наиболее чувствительной к повреждениям фазы развития растений, а также с учетом предупреждений, передаваемых службами прогнозов [16].

В интегрированной защите растений в XXI столетии наиболее перспективными остаются разработки, связанные с поиском и использованием гербицидов с новым механизмом действия: влияющие на биосинтез хлорофилла, каратиноидов, витаминов, кофакторов ферментов. Требованиями к ним являются слабая подвижность в окружающей среде, разрушаемость до нетоксичных остатков, безопасность для нецелевых объектов, организмов. Важным пунктом является экономический порог вредности, т.е. такой уровень заселенности вредителями, при котором стоимость убытков при недоборе урожая в отсутствии обработки выше, чем стоимость обработки. Этот подход в результате приводит к сокращению числа обработок по сравнению с прежней практикой «слепого», так называемого «календарного» опрыскивания [17–20].

Концепция ужесточения экологических требований безопасности к регистрируемым пестицидам, комплексной оценки коммулятивного действия и десятикратного фактора безопасности зарегистрированных препаратов более точных методов оценки побочных эффектов. Это тем более важно, что могут использоваться пестициды, утратившие срок патента, но по биологическим, экономическим параметрам отвечающие новым требованиям. Неблагоприятная ситуация складывается с разработкой ассортимента средств защиты растений для культур с небольшими площадями, так как фирмы не заинтересованы нести большие затраты на создание и регистрацию пестицидов, которые заведомо не будут окупаться при небольшом спросе и объемах продаж препаратов. Количество экспериментальных данных по вопросам эффективности и возможностях проявления нежелательных побочных эффектов недостаточно для регистрируемых пестицидов таких культур [21–23].
1.2 Влияние гербицидов на растения
В основе механизма действия гербицидов лежит их многостороннее влияние на рост и развитие целого растения, отдельных его органов, тканей и клеток, на клеточные структуры, органеллы клетки, физиологические и биохимические процессы, ферментативные реакции и белково-ферментные структуры.

Лишь комплексная оценка этих влияний позволяет выявить общий механизм действия гербицидов на растение. Первичное место действия гербицидов определяется его взаимодействием с чувствительными системами растения на молекулярном уровне.

Так как до настоящего времени еще не раскрыта молекулярная природа многих процессов жизнедеятельности, происходящих в растениях, то возникают трудности и с определением первичного механизма действия гербицидов.

Механизм действия гербицидов тесно связан с характером и поведением вещества-токсиканта в растении, с поглощением и перемещением его по растению и с непосредственным влиянием на жизненно важные процессы: основной, промежуточный и вторичный метаболизмы.

Действие гербицидов на основной метаболизм проявляется в нарушении процессов образования органических соединений в ходе фотосинтеза, процессов генерирования высокоэнергетических химических связей при дыхании и окислительном фосфорилировании, в ингибировании синтеза основных клеточных полимеров – белков, нуклеиновых кислот, крахмала и клетчатки. В результате действия гербицидов на промежуточный метаболизм нарушаются процессы распада и образования низкомолекулярных органических соединений, необходимых для нового синтеза; действие на вторичный метаболизм выражается в нарушении синтеза различных специфических компонентов растительных клеток типа алкалоидов, пектина, кумаринов, антоциана, фитогормонов, танинов [24].

Гербициды могут влиять на рост растений. Однако практический интерес представляют соединения, действующие на процессы основного и вторичного метаболизмов. Такие гербициды нетоксичны для теплокровных животных и человека. Более опасны и менее избирательны гербициды, нарушающие промежуточный метаболизм в растительных тканях, который в значительной степени сходен для всех живых клеток, содержащих ядра.

Механизм действия контактных гербицидов сводится к нарушению целостности клеточных мембран, увеличению их проницаемости и разрушению, ведущему к потере содержимого клеток и их отмиранию. В силу такого действия гербициды слабо или практически не перемещаются по флоэме. Однако они могут перемещаться с транспирационным током по клеткам ксилемы.

Системные гербициды действуют на один или несколько физиологических и (или) метаболических процессов в растении. Они вызывают гибель растения через несколько дней или недель после поглощения гербицида, то есть проявляют хроническое токсическое действие, в отличие от быстродействующих контактных гербицидов. Многие гербициды проявляют одновременно и контактное, и системное действия.

По характеру перемещения по растению гербициды делятся на перемещающиеся преимущественно с транспирационным током по ксилеме или с продуктами фотосинтеза по флоэме. Системные гербициды свободно перемещаются от клетки к клетке через плазмодесмы, проникая через мембраны и аккумулируясь в местах действия в токсичных количествах, не повреждая при своем движении живых, жизненно важных систем [25].

Устойчивость растений к гербицидам определяется совокупностью морфологических, физиологических и биохимических факторов, от которых зависит соотношение количеств попавшего на растение, поглощенного и разрушенного токсиканта. Если скорость детоксикации гербицида равна скорости его поступления в места действия, растение проявляет устойчивость.

Поступившие в растения и достигшие мест действия гербициды могут оказывать разностороннее влияние на важные процессы жизнедеятельности: деление клеток, развитие тканей, образование хлорофилла или пластид, фотосинтез и дыхание.

Гербициды, нарушающие процесс деления клеток (например, производные карбаматов и дитиокарбаматов), рассматриваются как митотические яды. Они прерывают нормальный процесс деления клеток (митоз) в период между метафазой и анафазой, препятствуют образованию перегородок в делящихся клетках, формирующихся после телафазы, что приводит к возникновению ненормальных многоядерных клеток [26].

Проводили сравнительные цитогенетические исследования количественных и качественных закономерностей действия гербицидов трефлан (2,6 – динитро-4 – (трифторметил) – N, N-дипропиланилин) и зенкор (4-амино-6-трет-бутил-3-метилтио – 1,2,4 – триазинон-5).

Выявлена цитогенетическая активность трефлана (рисунок 1): частота перестроек в опыте, где концентрация гербицида составляла 1 мг/л, была выше, чем в контроле более чем в 68 раз (32,37 и 0,47% соответственно).


Рисунок 1 – Влияние гербицидного препарата трефлан на частоту хромосомных аберраций и величину митотического индекса у Hordeum vulgare L. сорт «Визит»
Большинство изменений представляли собой различные типы нарушений ахроматинового веретена: наблюдалось полное его разрушение, разрыв части его нитей и многополюсность, вызывающие образование полиплоидных и полиядерных клеток, в том числе клеток с микроядрами, иными словами, клеток с нерегулярным числом хромосом.

В результате изучения действия зенкора на меристематические клетки ячменя установлено, что препарат негативно влияет на процесс образования клеточной перегородки при митозе. Наблюдали двуядерные интерфазные клетки, иногда в центре таких клеток имелась незавершенная межклеточная перегородка. В анафазе регистрировали нарушения расхождения хромосом: отставания хромосом, неравномерное расхождение хромосом к полюсам, многополюсность (рисунок 2). Зенкор также негативно влиял на пролиферативную активность клеток. Показатель митотического индекса для концентраций 250, 500, и 750 мг/л был достоверно ниже, чем в контроле.


Рисунок 2 – Влияние гербицидного препарата зенкор на частоту хромосомных аберраций и величину митотического индекса у Hordeum vulgare L. Сорт «Гонар»
Гербициды типа регуляторов роста – арилоксиалканкарбоновые кислоты и их производные – нарушают рост и развитие клеток ксилемы и флоэмы, вызывая их деформацию.

Наиболее безопасными для человека и животных являются препараты, влияющие на структуры и процессы, свойственные растительным организмам и отсутствующие у теплокровных. Это прежде всего гербициды, воздействующие на процесс преобразования солнечной энергии в химическую – фотосинтез. Группа ингибиторов фотосинтеза многочисленна и включает половину препаратов, известных в настоящее время. Среди них соединения нарушающие биосинтез хлорофилла и других фотосинтетических пигментов. Фомезафен, например, ингибирует синтез каратиноидов на этапе фитоина.

К этой же группе относятся вещества, подавляющие сам процесс фотосинтеза на различных его этапах. При воздействии гербицида на фотосинтез на световой стадии I нарушается процесс восстановления метаболита Х, обладающего минимальным потенциалом, и окисления метаболита Р700, обладающего промежуточным потенциалом; действие на световой стадии II сказывается на процессе восстановления метаболита Y и одновременно протекающем процессе фотолиза воды и выделения кислорода.

Производные 4,4 – дипиридила, попав в растение, становятся посредниками при переносе электрона на световой стадии I, нарушают ее ход и «обесценивают» солнечную энергию, поглощаемую растением. Электронно-транспортная система при этом не блокируется, как в случае других гербицидов, подавляющих фотосинтез.

Большинство гербицидов – ингибиторов фотосинтеза – действуют на световую реакцию II, прерывая поток электронов к хлорофиллу и подавляя процесс фотолиза воды (реакция Хилла). Так проявляют себя нитрофенолы, производные карбаминовой кислоты, анилиды, гидроксибензонитрилы, производные мочевины, производные 1,2,5 – триазина, 1,2,4 – триазина, производные пиримидина, бензимидазолы, пиридазиноны, производные фурана (этофумезат) и производные тиадиазолов (бентазон) [28].

Перспективными являются гербициды, влияющие на синтез органических азотсодержащих веществ, в частности аминокислот в тканях растений. Сульфонилмочевины нарушают биосинтез валина и изолейцина, воздействуя на фермент ацетолактатсинтазу, катализирующую первый этап этого процесса. Аналогично действуют гербициды новой группы имидазолинонов (арсенал, АС 243997). Биосинтез ароматических аминокислот ингибирует раундап, гистидина – амитрол, глютамина – баста (фосфинотрицин).

Отсутствуют гербициды со специфичным действием на процесс дыхания растений. Некоторые препараты могут подавлять перенос электронов, блокируя отдельные этапы фосфорилирования, другие – разобщать фосфорилирование путем разрыва (гидролиза) высокоэнергетических молекул веществ, участвующих в переносе энергии, что приводит к непроизводительному расходованию энергии, освобождающейся при дыхании.

Ряд гербицидов изменяет активность клеточных ферментов, действуя на них прямо или косвенно. В первом случае молекулы гербицида взаимодействуют с веществами клеточных ядер, конкурируют с субстратом за активные места на молекулах ферментов, образуют комплексные соединения с ферментами или с их субстратами, что в одних условиях подавляет, а в других – стимулирует активность ферментов. Гербицид может конкурировать с кофакторами ферментативных белков: изменять состояние белкового кофактора и предотвращать активную связь кофактора с протеиновой частью фермента.

Косвенное действие гербицида на ферменты проявляется в торможении поступления в клетки энергии, необходимой для реакций образования АТФ, а также исходных материалов для синтеза коферментов и простетических групп, в изменении условий протекания ферментативных реакций [26].
1.3 Краткая характеристика и механизм действия глифосата (раундапа)
Глифосат является пестицидом широкого спектра действия, активно применяемым для уничтожения нежелательных растений, как в сельском хозяйстве, так и в несельскохозяйственных ландшафтах. Большинство продуктов, содержащих глифосат, либо изготовляется, либо используется вместе с поверхностно-активным веществом, помогающим глифосату проникнуть в клетки растений. Поверхностно-активное вещество, используемое в распространенном продукте на базе глифосата (известном под названием «Раундап»), более токсично, чем сам глифосат, а комбинация этих двух веществ еще более токсична [29].

Гербициды на базе глифосата, предлагаемые производителями как «мало токсичные и дружественные к окружающей среде», могут казаться панацеей при борьбе с нежелательными растениями. Между тем, продукты, содержащие глифосат, обладают острой токсичностью для животных, включая человека. Симптомы: раздражение глаз и кожи, головная боль, тошнота, оцепенение, повышенное кровяное давление и учащенное сердцебиение. Наблюдения за людьми (в основном фермерами), имеющими контакт с глифосатом, показали, что такой контакт ассоциируется с увеличением риска выкидышей, преждевременными родами и раковой лимфомой.

Препарат впервые был зарегистрирован в США в 1974 году и применяется для борьбы с сорняками в широком спектре сельскохозяйственных, городских, садово-парковых, водных и лесных ситуаций. Большинство гербицидов содержит изопропиламиновую соль глифосата [30].

Глифосат занимает место среди наиболее распространенных пестицидов в сельском хозяйстве. Наибольшее использование его отмечено при производстве соевых бобов, кукурузы, сена, на пастбищах и на землях под паром. Применение глифосата в настоящее время увеличивается, в основном вследствие недавней разработки с помощью генной инженерии и интродукции растений, толерантных к гербициду.

Глифосат, N – (фосфонометил) – глицин (рисунок 3) является неизбирательным гербицидом, действующим на весь организм, который используется для уничтожения широколиственных, травянистых и осоковых видов растений [31].






Рисунок 3 – Структурная формула глифосата
Глифосат хорошо поглощается надземными органами растений и передвигается в глубоко залегающие корни. К нему чувствительны однолетние и многолетние однодольные и двудольные растения, в том числе такие корневищные и корнеотпрысковые, как пырей, свинорой, гумай, острец, осот желтый, бодяк полевой, марь белая и другие. Передвигается глифосат с места нанесения медленно (7–10 дней), но на большие расстояния (на глубину до 2 м) и вызывает гибель корневищ в радиусе 30 см. Многолетние сорняки подавляются в течение всего вегетационного периода, однолетние – до повторного отрастания новых. Визуально наблюдаемый эффект проявляется на однолетних растениях через 2–4 дня, на многолетних – через 7–10 дней, а полная гибель сорняков наступает через 20 дней и более после применения препарата. Прохладная и облачная погода замедляет проявление фитотоксичности гербицида, а осадки, выпавшие менее чем через 2 часа после опрыскивания, могут снизить эффективность обработки.

Сорные растения сначала приобретают светло-зеленую окраску, затем желтеют, обесцвечиваются, теряют тургор, засыхают и через 14–20 дней погибают [16].

Механизм действия глифосата по данным EPA в настоящее время досконально не изучен. Но благодаря исследованиям установлено, что глифосат ингибирует ферментный путь с участием шихимовой кислоты, не позволяя растениям синтезировать три ароматических аминокислоты (триптофан, тирозин, фенилаланин). Ароматические аминокислоты выполняют важную роль в клеточном метаболизме. Они входят в состав белков и служат исходными соединениями для метаболизма фенилпропаноидов – «массовой продукции», образующейся в процессе роста растения. В их состав входят пигменты и полимер клеточных стенок – лигнин. Ключевой фермент, ингибируемый глифосатом, называется EPSP синтаза (5-енолпирувилшикимат-3-фосфатсинтаза).

Глифосат может оказывать воздействие на ферменты растения не связанные с участием шихимовой кислоты. У сахарного тростника он снижает активность фермента, участвующего в метаболизме сахара. Он также ингибирует главный детоксифицирующий фермент растений [31].

Фактически каждый пестицид, кроме так называемого «активного» вещества, предназначенного для уничтожения растений, содержит также другие ингредиенты. Эти ингредиенты неточно называют «инертными». «Инертные» составляющие предназначены для облегчения использования продукта и увеличения его эффективности. Как правило, эти составляющие не указываются на этикетках пестицидных продуктов.

Глифосат является представителем органофосфонатов с активированной прямой С-Р связью и составляет основу многих гербицидов. Их отличает высокая токсичность и устойчивость к разложению. C-P связь органофосфонатов трудно гидролизуема химическим путем, но может быть разорвана с помощью особых ферментных систем микроорганизмов-деструкторов. Высвобождающийся фосфор используется микроорганизмами в качестве единственного источника этого компонента в процессах биосинтеза и энергетического обмена [32].

Стойкость глифосата в почве изменяется в широких пределах, и нет однозначного ответа на вопрос, сколько времени глифосат остается в почве. Периоды полураспада (время, необходимое для распада или уноса половины исходного количества глифосата), определенные производителем глифосата, составили от 3 до 141 дня [33].

Считается, что глифосат образует прочные комплексы с большинством почв, и поэтому он исключительно иммобилен. Это означает, что маловероятно заражение глифосатом воды и почвы вне участка его применения. Однако эта связь с почвой является обратимой. Например, некоторые исследования показали, что глифосат легко связывается с разными видами почв. Однако десорбция, когда глифосат отсоединяется от частиц почвы, происходит также легко.

Глифосат был обнаружен как в поверхностных, так и в грунтовых водах. Стойкость глифосата в воде ниже, чем в почве [34].

Глифосат может нанести ущерб многим организмам, не являющимся мишенью для пестицида. Имеются также и другие серьезные эффекты, такие, как влияние на редкие виды растений, ухудшение качества семян, снижение способности фиксировать азот, увеличение подверженности растений болезням и уменьшение активности микоризных грибов [35].

Качество семян. Cублетальная обработка хлопка «Раундапом» сильно ухудшает всхожесть семян и развитие рассады в полевых условиях. При наименьших проверенных концентрациях глифосата всхожесть семян уменьшилась в пределах от 24 до 85%, а вес рассады – от 19 до 83% [36].

Фиксация азота. Большинство живых существ не способно усваивать азот в чистом виде и получают его в виде аммиака и нитратов. Аммиак и нитраты образуются в результате процессов, которые называются фиксацией азота и нитрификацией. Эти процессы осуществляются бактериями, живущими в почве и в клубеньках на корнях бобовых и некоторых других растений.

При концентрациях, соответствующих типичным дозировкам применения, глифосат снижает на 70% число азотфиксирующих клубеньков у клевера, посаженного через 120 дней после обработки; аналогичная концентрация гербицида с глифосатом снижает на 27% число клубеньков у клевера, выращиваемого на гидропонике. Сходная концентрация глифосата уменьшает на 20% процесс фиксации азота бактериями в почве. Обработка гербицидом с глифосатом при самой низкой проверенной концентрации (в 10 раз меньшей, чем при типичной дозировке его применения) уменьшает число клубеньков у клевера на 68–95%.

Микоризные грибы – это полезные грибы, живущие на корнях и вокруг корней растений. Они помогают растениям усваивать питательные вещества и влагу из почвы и могут защитить их от холода и засухи. Обнаруживают токсичность «Раундапа» по отношению к микоризным грибам, ассоциированным с хвойными деревьями, при концентрациях от 1 части на миллион, что ниже концентраций в почве при типичных дозировках применения. У орхидных обработка глифосатом меняла полезное взаимодействие между орхидными и их микоризой на паразитическое взаимодействие (не приносящее пользы растениям) [37].

Болезни растений. Обработка глифосатом увеличивает подверженность культурных сельскохозяйственных растений ряду болезней. Например, глифосат увеличил заболевание корней и стеблей помидоров; снизил способность бобовых растений защищать себя от антракноза; увеличил распространение неспецифических гнилей в почве пшеничного поля и снизил пропорцию почвенных грибов – антогонистов гнилевых грибов; увеличил содержание в почве двух возбудителей болезней корней гороха. Кроме того, обработка соснового питомника ослабила защитную способность саженцев противостоять голубой гнили [38].

Для получения максимального эффекта от применения глифосатсодержащих гербицидов необходимо соблюдать следующие правила:

– перед проведением опрыскивания тщательно и быстро убрать всю солому с поля;

– в момент обработки сорные растения должны активно вегетировать, так как препараты попадают в них через листья и другие зеленые органы. Пырей должен иметь 3–4 активно ассимилирующих листа (высота 10–20 см), осоты – 4–5 листьев (диаметр розетки 10–20 см). После сильной засухи можно для стимулирования отрастания осотов и однолетних сорняков провести дискование стерни, дождаться появления свежих розеток и после этого применить гербицид. Для лучшего отрастания пырея механические обработки, напротив, нежелательны;

– оптимальная температура воздуха для воздействия препаратов составляет от 15 до 25С. Хотя они работают и при температуре 5С, однако их действие замедляется. Глифосат можно применять за 1–2 недели до наступления первых заморозков. Даже после заморозков гербициды действуют, хоть медленно, но не менее эффективно, если к моменту опрыскивания побурение вегетативной массы сорняков вследствие холодов составляет менее 25%;

– в засушливых условиях, при низком срезе полегших зерновых культур, для стимулирования отрастания многолетников желательно провести дискование стерни, а через 2–3 недели после него – опрыскивание по отросшим сорнякам;

– так как глифосат передвигается по всей корневой системе сорняков, полная их гибель (пожелтение и засыхание) происходит в течение 14 – 21 дня;

– осадки, выпавшие через 4–6 ч после обработки, снижают гербицидный эффект;

– оптимальный расход рабочей жидкости – не более 100–200 л/га;

– нормы внесения раундапа зависят от видового состава сорняков. Против пырея применяют 3–4 л/га, видов полыни – 5 л/га, осотов – 5–6 л/га;

– обработки почвы возможны уже через 5–7 дней после опрыскивания, но лучше – через 15–21 день, после полного отмирания сорняков [39].

Особенно важно использование данных гербицидов под зерновые, в том числе и озимые. Озимые часто располагаются по пласту многолетних трав. Использование глифосатов после отрастания первого укоса трав и сорняков обеспечивает их полную гибель, соответственно, упрощается разделка пласта трав и запашка, снижаются на 25–30% затраты на выполнение этих операций, отсутствует дальнейшая вегетация растений трав в посевах озимых или других культур.

При оценке экономической эффективности применения гербицидов – производных глифосата важно учитывать, что при вспашке и подготовке поля экономится до 30% топлива, снижаются и другие затраты. Данное мероприятие является наиболее экологически безопасным способом подавления многолетних сорняков, так как в момент химпрополки сельскохозяйственные культуры не вегетируют, удобно работать механизатору, используется небольшой объем рабочей жидкости, гарантируется отсутствие многолетних сорняков на 2–3 года. В среднем один рубль, вложенный в осенний период, например, в звене севооборота «озимая пшеница после многолетних трав», окупается через два года после применения 10, а через три года – 16 рублями/га прибыли. На зерновых прибавка урожая составляет не менее 5 ц/гa зерна, на льне – не менее 1–3 ц/га семян и 5–10 ц/га соломы, на люпине – 5 ц/га зерна [40].
    продолжение
1 2 3 4    

Добавить дипломную работу в свой блог или сайт
Удобная ссылка:

Скачать дипломную работу бесплатно
подобрать список литературы


вверх страницы


© coolreferat.com | написать письмо | правообладателям | читателям
При копировании материалов укажите ссылку.